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Paramecium, a research subject in many areas of life sciences, appeared to be a ciliate genus with a well-
-known biodiversity structure. However, the understanding of its biological diversity has been evolving 
rapidly in recent years, driven by the discovery of new taxa and an expanded knowledge of the distribution 
of known species. Most future insights into Paramecium biodiversity are expected to come from molecular 
data, particularly through eDNA sampling. As one of the most recognisable microeukaryotes, commonly 
found in freshwater ecosystems, and with over a century of biodiversity research – including extensive 
reference data from GenBank records and living culture collections – Paramecium holds significant po-
tential to become a model ciliate for studies in biodiversity and biogeography. This review addresses the 
challenges of species identification within the Paramecium genus, the current state of knowledge on its 
biodiversity and other factors that may shape future research. Despite some existing bottlenecks, new 
approaches to data acquisition and analysis will enable researchers to integrate diverse lines of evidence, 
allowing for exceptional explorations of Paramecium species and populations.
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Although ciliates, like many other single-celled 
microbial eukaryotes, are key components of trophic 
food webs in various habitats (Lynn 2008, 2012), 
they are still severely underestimated in terms of their 
biodiversity (Medinger et al. 2010; Weisse 2014). It 
was previously supposed that 83-89% of the ciliate 
diversity remains undescribed (Foissner et al. 2008). 
This problem is caused by the species’ complex 
structure (Caron 2013; Nanney & McCoy 1976), 
the under-sampling of many habitats (Foissner et al. 
2008; Fokin 2010/2011) and the proper selection of 
a DNA marker, especially when the systematic iden-
tification relies solely on molecular analyses (Zhan 

et al. 2019). Most ciliates are free-living in various 
environments, including ponds, lakes, estuaries, salt 
marshes and oceans (Lynn 2016). Their distribution 
is an intensely-debated issue with two hypotheses: 
the ‘ubiquity model” (UM) (Fenchel & Finlay 2004; 
Finlay et al. 2006) (also called “everything every-
where, but the environment selects”) and the “mod-
erate endemicity model” (MEM) (Foissner 2006; 
Foissner et al. 2008).

One of the most studied ciliate genera is Paramecium 
(Beale & Preer 2008; Sonneborn 1975; Wichterman 
1986), the species of which are model organisms in 
many fields of biological and medical surveys (Long 
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future most of the knowledge of Paramecium, as 
well as the biodiversity of other organisms, will be 
based on molecular data (Hoban et al. 2022; Porter 
& Hajibabaei 2018). Thus, the application of suit-
able molecular markers to facilitate species identifi-
cation has been in the recent past and is still crucial 
to properly assess the biodiversity of Paramecium 
and other microbial eukaryotes.

DNA markers for Paramecium biodiversity 
assessments
Initially, Paramecium species were determined 

morphologically based on the shape and size of 
their cells, characteristics of the nuclear apparatus, 
contractile vacuoles and the presence or absence of 
endosymbionts (Fokin 2010/2011). The identifica-
tion of cryptic species or syngens was based on the 
results of mating reactions (Chen 1956; Sonneborn 
1970). However, the strain crosses technique, which 
has been used for years, requires Paramecium cul-
tures in an appropriate stage of sexual maturity, and 
complementary mating types of standard strains. 
These two issues greatly complicate the determina-
tion of cryptic species.

The introduction of molecular techniques, such 
as isozyme patterns (Allen et al. 1973), RAPD 
(Przyboś et al. 2006), RFLP (Maciejewska 2006), 
ARDRA (Przyboś et al. 2007a) and PFGE (Rautian 
& Potekhin 2002) has facilitated studies on genetic 
polymorphism within the genus Paramecium. The 
main disadvantages of the above analysis techniques 
were relatively low reproducibility, limited resolu-
tion, ambiguity and incomparability of the results 
obtained by different research teams (Laimeheriwa 
et al. 2018; Matsumoto et al. 2022). The application 
of DNA sequencing techniques and the presence 
of sequenced DNA fragments in public databases 
(e.g. GenBank) has allowed for the above problems 
to be solved.

Although the first phylogenetic analyses based 
on studying DNA fragments from ciliates of the 
genus Paramecium date back to the early 1980s 
(Kumazaki et al. 1982), their use became more wide-
spread only about 20 years later (Barth et al. 2006; 
Coleman 2005; Fokin et al. 2004; Hori et al. 2006; 
Maciejewska 2007; Przyboś et al. 2007b; Strüder-
Kypke et al. 2000).

Nevertheless, a weak point of the above analyses 
was their selectivity (studies have focused on a small 
number of Paramecium strains) and a lack of con-
sistency (every study concerned a different genome 
fragment). It is worth noting that the identification 
of a universal DNA marker is fundamental when it 

et al. 2023; Van Houten 2023). Paramecium was 
probably observed for the first time under the mi-
croscope by Antony van Leeuwenhoek (Van Houten 
2019), then named in 1752 by John Hill (Woodruff 
1921), and is considered, together with Tetrahymena, 
Stentor and Vorticella, to be one of the flagship cili-
ate genera (Lynn 2016).

Paramecia are visible to the naked eye due to their 
size (50-300 μm in length, depending on the species) 
(Fokin 2010/2011). They are free-living, predatory 
ciliates, which inhabit mainly freshwater and less 
frequently brackish water reservoirs (Brette 2021; 
Fokin 2010/2011), but so far have not been found in 
marine ecosystems (Fokin 2023). It is believed that 
the phylogenetic history of Paramecium dates back 
hundreds of millions of years (De Souza et al. 2020), 
with a fossil being discovered in a 200 million-year-
old piece of amber (Schönborn et al. 1999). As with 
all other ciliates (Verdonck et al. 2022), Paramecia 
have two distinctly functioning, differentiated nu-
clei in one cytoplasm: a germline micronucleus; and 
a  somatic, transcriptionally active macronucleus 
(Long et al. 2023). The Paramecium genus con-
tains over twenty morphological species divided 
into  six  subgenera: Paramecium, Cypriostomum, 
Helianter, Chloroparamecium, Viridoparamecium 
and Neobursaridium (Serra et al. 2022). Within 
some of the morpho-species, the existence of cryptic 
species has been reported (Greczek-Stachura et  al. 
2021; Melekhin et al. 2022, 2024; Potekhin A. & 
Mayén-Estrada 2020; Przyboś & Tarcz 2016; 
Sonneborn 1975). While some of these species ap-
pear to have a worldwide distribution (Long et al. 2023; 
Melekhin et al. 2022; Tarcz et al. 2018), other 
Paramecium species are less extensively spread and 
may even be endemic (Krenek et al. 2015; Potekhin 
& Mayén-Estrada 2020; Przyboś et al. 2014). The 
state of knowledge of Paramecium biodiversity has 
been changing dynamically in recent years, both 
through the description of new taxa (Krenek et al. 
2015; Potekhin & Mayén-Estrada 2020; Serra et al. 
2022) and new knowledge on the ranges of known 
species (Przyboś & Tarcz 2018; Tarcz et al. 2023).

In recent years, the application of molecular ap-
proaches, particularly the availability of nucleotide 
sequences (for example, from the GenBank data-
base), has allowed for a more accurate appraisal of 
the complex structure of ciliates and other micro-
eukaryote species (Bass & Bell 2016). Although it 
is thought that to assess biodiversity the collected 
DNA sequence information should be applied to the 
background of the genetic, morphological, physi-
ological and ecological data (Caron 2013; Dunthorn 
et al. 2014; Stoeck et al. 2014), it appears that in 
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above issue, problems are encountered with what 
one might refer to as the ‘bottleneck effect’. Gen-
erally, the term ‘bottleneck effect’ corresponds to 
a kind of restriction – or in the case of a population, 
with a  decrease in its genetic diversity (Nei et al. 
1975). In turn, restrictions in sampling, processing, 
and data analysis methodologies mostly cause the 
‘bottleneck effect’ in protistan or ciliate biodiversity 
surveys.

It appears that the biodiversity assessment prob-
lems concerning Paramecium are just as relevant 
for ciliates as for the other microeukaryotes (small 
eukaryotic, mostly unicellular organisms: protists, 
algae or fungi). They can be classified as follows:

1. Sampling and detection biases (including the 
abovementioned undersampling). 
The biodiversity of microeukaryotes can be difficult 

to capture in surveys due to differences in popula-
tion sizes, environmental circumstances and spatial-
temporal fluctuations. According to Lehtiniemi et al. 
(2022), there is a need for optimising sampling fre-
quencies, since the present approaches may miss out 
on diverse kinds of microeukaryotes. For example, 
in the case of Paramecium, a significant amount 
of its biodiversity data (especially its tropical bio-
diversity) is acquired through incidental sampling 
(Przyboś et al. 2013; Przyboś & Tarcz 2018; Tarcz 
et  al. 2023) rather than through planned surveys 
(Melekhin et  al. 2024; Potekhin & Mayén-Estrada 
2020; Tarcz et al. 2018). Therefore, most areas re-
main unexplored (e.g. Afrotropical, Nearctic, In-
domalayan and Australasian realms), and what is 
interesting is that this issue concerns Paramecium 
– one of the most recognisable microeukaryotes. So 
what about the biodiversity knowledge of the other, 
less-known representatives of Protista?

2. Technical bottlenecks in the sequencing and 
reusing of molecular data. 
Molecular approaches such as metabarcoding 

provided breakthroughs in many microeukaryote 
surveys; however, the huge amount of sequencing 
data may overwhelm computing analysis workflows 
(Forster et al. 2019). In contrast, another problem 
is the renewed and easy access to DNA barcodes or 
raw sequencing data, which can be used repeatedly 
in other biodiversity studies (Paupério et al. 2023). 
Currently, in terms of Paramecium, most of the mo-
lecular data is deposited in the GenBank database as 
separate records connected with particular species, 
cryptic species or populations. However, the minor-
ity data – which may quickly become the major-
ity – is obtained from surveys not directly related 

is the only tool used to delineate boundaries between 
species of eukaryotic microorganisms (Caron 2013), 
especially when the objects of a study are morpho-
logically indistinguishable, and without the possibil-
ity of performing strain crosses. 

The response to the above challenge was the con-
cept of DNA barcoding, which first appeared in the 
scholarly literature about two decades ago (Hebert 
et al. 2003). It was the first widely-accepted attempt 
to improve taxonomic research based on molecular 
data. However, it was instantly evident that there 
was no single DNA barcode for all living organisms 
(Moritz & Cicero 2004). Similarly, various mark-
ers for ciliates have been suggested as the best tools 
for DNA barcoding (Pawlowski et al. 2012; Stoeck 
et al. 2014; Strüder-Kypke & Lynn 2010).

For the genus Paramecium, despite the applica-
tion of numerous ribosomal, mitochondrial and nu-
clear DNA fragments (Barth et al. 2006; Coleman 
2005; Hori et al. 2006; Maciejewska 2007; Przyboś 
et al. 2011; Stoeck et al. 2014; Strüder-Kypke et 
al. 2000), two genetic markers are commonly used: 
various nuclear rDNA fragments; and the mitochon-
drial COI gene fragment (Barth et al. 2006; Greczek-
Stachura et al. 2021; Krenek et al. 2015; Melekhin 
et al. 2022). However, it has been established that 
in some circumstances, highly conserved rDNA seg-
ments might produce confusing results in taxonomic 
studies (Przyboś & Tarcz 2019). With regards to the 
COI mtDNA fragment, it is thought that mitochon-
drial genes evolve 5 to 10 times faster than nucle-
ar genes (Brown et al. 1979), making them better 
molecular markers for closely-related taxa, as has been 
demonstrated by previous surveys on the genus Para-
mecium (Krenek et al. 2015; Przyboś & Tarcz 2019). 

The reliability of DNA barcoding, regardless of 
the marker that is used, primarily depends on the 
quantity and quality of the reference data that links 
the obtained sequences to taxonomic designations 
(Hleap et al. 2021; Keck et al. 2023). Based on mo-
lecular data collected over the last 20 years or so, 
the genus Paramecium has a good reference base for 
rDNA and COI mtDNA fragments. Therefore, a suit-
able DNA marker, when used in future metabarcod-
ing studies, could be one of the ‘cures for the bottle-
neck problem’ in understanding the biodiversity of 
Paramecium and other microeukaryotes.

‘Bottlenecks effects’ in Paramecium biodiversity 
surveys
Exploring microeukaryote biodiversity is crucial 

to better understand their important roles and func-
tions in ecosystems. However, it seems that with the 
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2004) or poor knowledge of the distribution of par-
ticular species, which mainly boils down to the enig-
matic statement the ‘everything is everywhere, but, 
the environment selects’ (De Wit & Bouvier 2006). 
In the case of Paramecium, some species are also 
known from one or a small number of sites (Krenek 
et al. 2015; Potekhin & Mayén-Estrada 2020; Serra 
et al. 2022), which in practice limits the understand-
ing of their ecological dynamics and distribution.

6. ‘Shelf life’ of new species. 
Discoveries of new species often depend on one 

or a few specimens, leading to delays as researchers 
wait for additional context, sometimes for decades 
(SOSA 2024). This phenomenon has been referred to 
as the ‘shelf life’ – a period from the first specimen 
sampling to the formal species description, which on 
average may last around 21 years (Fontaine et al. 
2012). In the case of Paramecium buetschlii, for ex-
ample, which was sampled in Norway in 2005, its 
‘shelf life’ lasted 10 years (Krenek et al. 2015). 

I realise that these are not all the issues research-
ers face in studying the biodiversity of microeukary-
otic organisms such as Paramecium. Nevertheless, 
it can be assumed that they will significantly impact 
the future understanding of protistan biodiversity, as 
they are more comprehensive and also apply to other 
organisms (Twyford et al. 2024).

Towards eDNA metabarcoding of Paramecium 
– a potential model organism for freshwater 
microeukaryote biodiversity surveys
Environmental DNA, or eDNA, refers to the ge-

netic material found in environmental samples 
such as sand, water and air, which includes entire 
cells, extracellular DNA and perhaps whole animals 
(Taberlet et al. 2012; Ruppert et al. 2019); for exam-
ple, ciliates (Kulaš et al. 2021). Similarly, in the past 
decade, environmental RNA (eRNA) metabarcoding 
studies, with molecular techniques used to identify 
and analyse the diversity of organisms in an environ-
mental sample by sequencing specific, standardised 
genetic markers, have been extensively performed to 
examine microeukaryotes (Cook et al. 2024). Gener-
ally, microeukaryotic eDNA research is altering how 
scientists interpret and monitor ecosystems. These 
techniques offer non-invasive, cost-effective and 
compassionate approaches for investigating biodi-
versity, ecological relationships and environmental 
changes. These investigations have implications for 
conservation biology, public health, environmental 
monitoring, and evolutionary studies, while provid-
ing critical insights into the roles that microeukary-
otes play in sustaining healthy ecosystems (Blattner 

to Paramecium, and may somehow be lost due to 
its presence in the ‘flood’ of  HTS output (Abraham 
et al. 2024; da Silva & Fernandes 2023, 2024).

3. Taxonomic gaps. 
Incomplete reference databases are a significant 

bottleneck for identifying protists (Gelis et al. 2024), 
particularly ciliates (Boscaro et al. 2017). Although the 
amount of reference data for the genus Paramecium 
seems sufficient for metabarcoding (Long et al. 
2023), discoveries in recent years have shown that 
we still know too little about its biodiversity (Krenek 
et al. 2015; Melekhin et al. 2022, 2024; Serra et al. 
2022). Furthermore, some Paramecium species 
(e.g.  P. africanum, P. jankowskii, P. ugandae and 
P. wihtermanii) have been described only based on 
morphological characteristics; therefore, their prop-
er affiliation cannot be established due to a lack of 
living strains (cf Krenek et al. 2015) – a source of 
the reference molecular data for these species.

4. Time-consuming procedures for species desig-
nation. 
Despite frequent occurrences in aquatic ecosys-

tems, ciliates are often disregarded due to their time-
consuming and costly morphological identifica-
tion (Hering et al. 2018). For example, in the case 
of Paramecium, the key traits used to distinguish 
morphospecies are the cell size and shape, type 
and number of micronuclei, structure of contrac-
tile vacuoles and the occurrence of endosymbionts 
(Fokin 2010/2011), or mating tests (strain crosses) in 
the case of cryptic species designation (Sonneborn 
1970). Moreover, many other ciliates are fragile and 
fast-moving, and they frequently require challenging 
preservation and staining methods for their proper 
identification (Dopheide et al. 2009). 

These problems with species designations are 
compounded by a crisis in taxonomy, due to its un-
derfunding and the decreasing number of taxono-
mists, including protozoologists (Britz et al. 2020; 
Löbl et al. 2023; Orr et al. 2020).

5. Limited understanding of ecological dynamics 
and distribution. 
Complex factors such as founder effects, popula-

tion bottlenecks and genetic drift make it difficult to 
adequately assess the environmental and evolution-
ary dynamics of ciliates (Ganser et al. 2021) includ-
ing Paramecium (Przyboś et al. 2011; Tarcz et al. 
2018). The reasons for this may be the description of 
a new species from one or at most two or three loca-
tions – the so-called Wallacean shortfall (Lomolino 
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ciliates that has been well-examined through system-
atic studies (Fokin 2010/2011; Krenek et al. 2015; 
Long et al. 2023; Serra et al. 2022), which is impor-
tant for identifying and matching the molecular data 
obtained during environmental DNA analyses.

Going down the rabbit hole. Whether the faster 
we run, the further we drift away from the goal 
of understanding and recognising Paramecium 
biodiversity?
Recognising the biodiversity of microbial eukary-

otes is essential for sustaining the Earth’s ecosys-
tems and supporting human activities that rely on 
balanced, healthy environments. Their roles in nutri-
ent cycling, climate regulation and disease preven-
tion highlight the need for a deeper scientific under-
standing and conservation efforts (Cavalier-Smith 
2004; Corliss 2002; Falkowski et al. 2008; Sogin 
et  al. 2006). Similarly, ciliates from Paramecium 
genus are important due to their role in maintaining 
the ecological balance, their use as model organisms 
in research and their potential applications environ-
mental monitoring (Lynn 2008).

Although Paramecium was reported in many 
freshwater ecosystems in the abovementioned 
eDNA metabarcoding surveys, its identification was 
limited to the genus (da Silva & Fernandes 2023, 
2024; Fernandes et al. 2021; Lansac-Tôha et al. 
2022) or species level only (Abraham et al. 2024), 
with no data on the occurrence of cryptic species. 
Understandably, the objective of these studies was 
a biodiversity assessment across a broad spectrum 
of eukaryotic microorganisms, rather than focusing 
solely on specific groups such as ciliates, or even the 
Paramecium genus. Although for this purpose the 
variable V4 region of the small subunit rDNA was 
employed, it is too conservative to accurately assess 
biodiversity among closely-related taxa (Zhan et al. 
2019). A similar issue has been observed with cryp-
tic species in Paramecium (Przyboś & Tarcz 2019). 
Therefore, the results of the survey performed by 
Abraham et al. (2024) showing that Paramecium 
tetraurelia has been identified in studied water 
samples may be imprecise, because this taxon has 
an identical V4 sequence variant with eleven other 
cryptic species of the P. aurelia complex (Przyboś & 
Tarcz 2019). Over a decade ago, the CBOL Protist 
Working Group (Pawlowski et al. 2012) proposed 
a two-step DNA barcoding approach. The first step 
involved the application of a universal eukaryotic 
pre-barcode – for example, the V4 domain of the 
18S rDNA gene – followed by group-specific bar-
codes; for instance, COI for ciliates (Strüder-Kypke 
& Lynn 2010) or amoebozoa (Kosakyan et al. 2015). 

et al. 2021; Metz et al. 2023; Pawlowski et al. 2016; 
Rishan et al. 2024). The use of eDNA metabarcod-
ing has resulted in a lot of new data, especially in 
relation to the biodiversity of ecosystem assess-
ments, allowing for the detecting of new taxa includ-
ing cryptic species and assessing the distribution of 
individual microeukaryote species (Abraham et al. 
2024). It provides an opportunity for studying not 
only the soil, freshwater and marine habitats (Huang 
et al. 2024; Schenekar 2023; Zimmermann et al. 
2024), but also enables sampling for sedimentary 
DNA (Nguyen et al. 2023). The latter makes it pos-
sible to assess changes in a microeukaryote species 
community over time.

Although to date, there have been no studies dedi-
cated to the genus Paramecium based on the meta-
barcoding of environmental DNA, it seems that it  is 
only a matter of time before such studies will be per-
formed. The application of eDNA for species detection 
and the biogeography assessment in Paramecium 
will potentially provide a large amount of new data, 
which may dramatically change our view of its bio-
diversity.

The frequent presence of Paramecium in freshwa-
ter ecosystems suggests its great potential as a model 
organism for studying microeukaryote biodiversity 
(Lynn 2016; Anand & Paul 2022). Recently pub-
lished metabarcoding studies support this hypoth-
esis. Moreover, they can also be applied to tropical 
areas, which remain poorly understood in the case 
of Paramecium biodiversity (Abraham et al. 2024; 
da Silva & Fernandes 2023, 2024; Fernandes et al. 
2021; Lansac-Tôha et al. 2022). The second aspect, 
which is directly connected with the previous one, is 
the estimated number of freshwater bodies on Earth. 
It is supposed that the global extent of natural lakes 
is 304 million, which occupy 4.2 million km2 in area, 
and are dominated in size by millions of water bodies 
smaller than 1 km2 (Downing et al. 2006). This, in 
turn, indicates a huge number of isolated freshwater 
habitats in which Paramecium species are very like-
ly to occur. The third issue concerns the reference 
data for metabarcoding eDNA surveys. In the case of 
Paramecium, there are a large number of rDNA and 
COI mtDNA sequences that have been deposited in 
GenBank for more than 20 years. In addition, col-
lections of living ciliates of the genus Paramecium 
can be a reservoir of reference materials for molecu-
lar and morphological studies. For example, the In-
stitute of Systematics and Evolution of Animals of 
the Polish Academy of Sciences (Krakow, Poland) 
houses a collection of more than 1,500 live strains of 
various Paramecium species that were established in 
the early 1960s. Finally, Paramecium is a genus of 
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to the smaller scale and higher accessibility of these 
ecosystems (Bernos et al. 2023).

eDNA metabarcoding is widely recognised for 
generating extensive datasets containing multispe-
cies information from environmental samples such 
as water, soil and sediment (Altermatt et al. 2023). 
These datasets, while they are initially collected for 
specific research purposes, offer significant potential 
for reanalyses to address a range of scientific ques-
tions, including those related to biodiversity patterns 
and species distribution changes (Dickie et al. 2018). 
This capability reduces the need for repetitive field 
sampling, as well as offering considerable time and 
resource savings. A key challenge, however, lies in 
enhancing the accessibility of this data (Berry et al. 
2021). The application of the FAIR principles – Find-
ability, Accessibility, Interoperability, and Reusabil-
ity (Wilkinson et al. 2016) – is therefore essential 
for effective data management and reuse, ensuring 
the datasets are accessible across different platforms 
and are usable by diverse research communities 
(Abarenkov et al. 2023). Importantly, eDNA reposi-
tories could be regarded as modern counterparts to 
traditional natural history collections (Monfils et al. 
2017), providing a complementary resource for bio-
diversity and taxonomic research. While they do not 
supplant physical collections, eDNA repositories – 
for example, PR2 or EUKARYOME (Guillou et al. 
2013; Tedersoo et al. 2024) – offer valuable genetic 
snapshots that contribute to our understanding of 
past and present ecosystems, particularly at the mo-
lecular level. Similarly, to traditional collections that 
house physical specimens such as bones, skins, pre-
served plants, and living or frozen microeukaryotes, 
eDNA repositories archive molecular data represent-
ing the biological material from organisms present 
in the environment at the time of sampling (Parducci 
et  al. 2017; Thomsen & Willerslev 2015). While 
eDNA repositories will offer exciting new ways to 
document and study biodiversity, they will com-
plement rather than replace traditional natural his-
tory collections or surveys based on morphological 
features (Chen et al. 2024; Westgaard et al. 2024). 
However, eDNA can provide critical genetic data 
that may be otherwise lost, especially in cases where 
physical sampling is difficult or impossible (e.g. for 
extinct or cryptic species). 

Currently, Artificial Intelligence (AI) is playing an 
increasingly prominent role in various fields, includ-
ing taxonomic research (Karbstein et al. 2024). In 
this area, taxonomists, as well as protozoologists and 
ciliatologists, are confronted with two major chal-
lenges: the need to analyse vast volumes of data rang-
ing from images and morphometric measurements to 

Another solution may be the application of multi-
marker eDNA metabarcoding, which allows for a si-
multaneous analysis of several DNA fragments, and 
therefore results in increased accuracy, broader 
taxonomic coverage and resolutions at different 
taxonomic levels (Cordier et  al. 2019; Topstad 
et al. 2021). In conclusion, problems in relation to 
methodological adjustments have been and remain 
one of the main challenges regarding DNA meta-
barcoding (Cristescu 2014; Diniz-Filho et al. 2024; 
Iwaszkiewicz-Eggebrecht et al. 2024).

The second problematic area is connected with 
the data, its collection and its subsequent analysis, 
especially its integration (Lapatas et al. 2015) and 
management (Wandelt et al. 2012). There is a great 
potential for sampling site numbers (Downing et al. 
2006) associated with problems caused by natural 
factors, geopolitical crises or financial obstacles, 
making it almost impossible to screen such a large 
number of water bodies for sampling a particular 
microeukaryote genus such as Paramecium. An op-
portunity to support Paramecium biodiversity as-
sessments could be citizen science, which has be-
come a powerful tool in protistology and planktonic 
research, enabling volunteers and non-professionals 
to conduct broad-scale monitoring and data col-
lection that would be difficult for research institu-
tions alone (Buonanno et al. 2020; Fry et al. 2024; 
Simoniello et  al. 2019). For example, projects 
such as ‘Plankton Planet’ (de Vargas et al. 2022) 
and ‘PlanktoScope’ (Pollina et al. 2022) highlight 
the role of citizen science in large-scale surveys of 
plankton populations and coastal ecosystems. Due to 
such initiatives, which engage citizen scientists, re-
searchers may gain access to valuable real-time data 
across vast geographic areas. Another option may be 
to teach field biologists how to collect an environ-
mental sample, isolate the DNA and send it to a lab 
(Rieder et al. 2024). 

A second idea that soon could aid in the acquisition 
of samples for microeukaryote eDNA metabarcod-
ing is the application of autonomic samplers, which 
are tools used for the automated and remote collec-
tion of water samples from aquatic environments, 
without the need for a human presence (Govindarajan 
et al. 2022; Preston et al. 2024). However, auton-
omous sampling for eDNA metabarcoding is used 
more frequently in marine environments due to its 
logistical advantages in covering large, remote ar-
eas, the need for continuous monitoring in stable wa-
ters and the cost-benefit considerations that make it 
worthwhile for such expansive ecosystems. In turn, 
in freshwater environments, manual sampling is of-
ten more feasible, efficient and cost-effective, due 
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